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Introduction 

Finite-element models are used extensively by the rotorcraft industry for determining the vibratory 
characteristics of helicopter airframes. These airframe models are typically large, usually containing several 
thousand finite elements, and their definition involves considerable effort. Results obtained by using these 
models usually do not correlate well with experimental data, particularly at the higher frequencies that are 
near the predominant rotor excitation frequencies (refs. 1 through 4). Although there are several possible 
reasons for the lack of correlation, one that has recently attracted attention is the accuracy of the elements 
themselves. 

Most finite-element codes in use today employ what are commonly referred to as h-version elements. An 
h-version element uses fixed-order shape functions to relate the discrete nodal displacements of the element 
to the continuous displacements within the element. Mesh size normally controls the accuracy of the results 
obtained using h-version elements. As the number of elements is increased, the mesh size decreases and the 
results tend to converge. Tests for convergence usually involve solving a series of problems with successively 
refined meshes until convergence is indicated. Such convergence checks are often used in studies which employ 
small models. To check the finite-element model of a large structure (such as an airframe) for convergence by 
mesh refinement would be a formidable task not likely to  be done in practice. So-called p-version elements that 
have recently gained attention have the potential for both improving accuracy and simplifying convergence 
checks. 

The pversion element is different from the h-version element in that the user may select the order of the 
shape function defining the displacement behavior of the element. In general, the higher the order of the shape 
function, the more accurate the results. Increasing the order of the shape functions is analogous to increasing 
the number of elements for a comparable h-version model. This feature becomes a distinct advantage in 
convergence checks of large finite-element models because raising the order of the shape functions would be 

The advantage of using p-version elements is lost if the element does not closely approximate the geometry 
of the structure being modeled. For example, a uniform p-version beam element would pose no advantage 
over a uniform h-version element in either accuracy or ease of use in modeling a tapered beam. However, 
a p-version beam element whose cross-sectional dimensions vary linearly with length would allow for a more 
accurate representation of a tapered beam than could be achieved with a uniform beam element. Because 
many substructures in a typical airframe consist of beams whose cross sections vary along their length, the use 
of p-version elements offers an advantage over h-version elements only if the p-version elements can accurately 
model the physical structure without resorting to excessive mesh refinement. 

The Langley Research Center has underway a research structural dynamics program which is investigating 
finite-element modeling techniques for helicopter vibrations analyses. This activity has identified the need 
for a small research code containing a limited library of p-version beam and shell elements. To meet the 
requirements of a research tool, these elements must be well documented, easily modified, and tailored to  
the needs of airframe vibrations analyses. Work has been initiated a t  Langley to develop such a code. Initial 
attention is being given to the beam element. A survey of the finite-element literature revealed no commercially 
available codes with p-version beam elements and only a few research codes having such elements. None of the 
latter codes appear to be suitable for airframe vibrations analyses work. However, there has been significant 
work done in the area of tapered h-version beam elements which is relevant to the beam element that is the 

Tapered beam finite elements based on cubic polynomial shape functions have been under investigation 
for many years (refs. 5 and 6). Higher order, tapered beam elements have also been developed. Thomas and 
Dokumaci (ref. 7) presented two tapered beam elements using quintic polynomials. One beam element had 
two internal n d e s ,  whcrcas the ether berm e!ement defined the second derivative a t  each end of the beam as 
a degree of freedom. Interelement continuity was then enforced for displacement and the first two derivatives, 
which formed a C2-type element. A tapered beam element using seventh-degree polynomial shape functions 
was derived by To in reference 8. Each node had four degrees of freedom (displacement and the first three 
derivatives) on which interelement continuity was imposed. It should be pointed out that these higher order 

I much easier than increasing the number of elements in the data input file. 

~ 

b subject of this paper. Pertinent work in this area is summarized. 

, 
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elements are not p-version elements because the order of the shape functions was fixed when the element was 
derived. In another paper, To (ref. 9) developed a tapered beam element incorporating shear deformation and 
rotary inertia but based the element formulation on cubic shape functions. More recently, a tapered p-version 
beam element was developed by Hodges, Hopkins, Kunz, and Hinnant (ref. 10) specifically for modeling rotor 
blades. To correctly model a spinning rotor blade, the element includes the nonlinear effects of large nodal 
displacements and rotations, aerodynamics, and inertial rotation. Such a complex element is not needed for 
modeling airframe structures. As a practical matter, elements used for the analysis of airframes should be 
relatively simple because of the large number of elements normally required to model the structure adequately. 

The objective of this paper is to present the derivation of a tapered, pversion beam element for use in 
dynamic analyses of general structural systems. This element features hierarchical shape functions which allow 
higher order analyses to use element matrices established for lower order analyses. Appropriate orthogonal 
relations for the shape functions are employed to avoid ill-conditioned matrices and reduce the number of 
nonzero terms. Element matrices are explicitly formed, thus eliminating the need for numerical quadrature 
resulting in a simpler implementation and R rdiirtier? ir? rxr,&ff errcr. 

I 

Symbols 
A 

ai 

E 

fui,fvi,fei 

G 

Idof 

Ix x JY Y 9 Izz 

Ndof 

Nelem 

N r ,  N f ,  N Y ,  N! 

cross-sectional area 

coefficients of polynomial representing cross-sectional property 

modulus of elasticity 

i th  axial, lateral bending, and torsional frequency, 
respectively, Hz 

shear modulus 

number of internal degrees of freedom 

area moment of inertia about X-, Y - ,  and Z-axis, respectively 

torsional stiffness constant 

stiffness matrix 

external stiffness submatrix 

external-internal stiffness coupling submatrice associated with u, 
v, w, and 8, respectively 

internal stiffness submatrice associated with u, v, w, and 8, 
respectively 

length of beam 

mass matrix 

external mass submatrix 

external-internal mass coupling submatrice associated with u, v, 
w, and 8, respectively 

internal mass submatrice associated with u, v, w, and 8, 
respectively 

total number of degrees of freedom 

number of elements 

i th shape function associated with U ,  v, w, and 8,  respectively 
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ith shape function of Co type 

ith shape function of C’ type 

number of shape function associated with u, v,  w, and 6 ,  
respectively 

quadratic polynomial representing generic cross-sectional 
property 

quartic polynomial representing generic cross-sectional property 

ith discrete degree of freedom associated with u, v, w, and 6 ,  
respectively 

SQ . 

St; 

St,j 

S1P 

matrix function defined by Ji P4(x)N:Nf dx 
matrix function defined by Ji P~(x)(N:)’(N~)’ dx 

matrix function defined by Ji Pz(x)N,”! dx 

matrix function defined by Ji P4(x)(Ni)’(Nj)’ dx 

2 J 

2 t.7 

matrix function defined by Ji P~(x)(N;)”(N~)” dx 

kinetic energy 

t time, sec 

V strain energy 

u,v,w displacement along X-, Y-, and Z-axis, respectively 

6i, j  

rectangular axis system with origin at one end of beam; 
X-axis along neutral axis of beam, and Y- and Z-axes oriented 
parallel to principal axes of beam 

independent variable along X-, Y-, and Z-axis, respectively 

coefficients in generating equation for N: 
coefficients in generating equation for Nil 
first variation of ( ) 

(i # j )  

(i = j )  

(i = 2 or 4) { T’ (Otherwise) 

rotation about X-axis (Le., torsion) 

mass density 

i th  axial, lateral bending, and torsional frequency, respectively, 
rad/sec 

{: 

Primes to  a symbol denote a derivative with respect to 2. A dot over a symbol denotes a derivative with 
respect to time. 
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Basic Mathematical Formulation 
The beam finite element is derived assuming that the beam behaves kinematically like a Bernoulli-Euler 

beam. Rotary inertia effects are included; however, shear flexibility is not included in the present formulation. 
The cross-sectional area can vary as a quadratic polynomial along the length of the beam, and the area moment 
of inertia can vary as a quartic polynomial. The element axis system X ,  Y, Z is oriented so that the X-axis is 
along the neutral axis of the undeformed beam, and the Y -  and Z-axes are parallel to the principal axes of the 
cross section. (See fig. 1.) This orientation results in a zero cross product of inertia ( I y z  = 0). The continuous 
displacements u,  w, w, and 8 are assumed to be only a function of x and time. 

Hamilton’s principle is used in the derivation of this beam element. Assuming only conservative forces, 
Hamilton’s principle is stated as (ref. 11) 

1; 6(T - V) dt = 0 

where t l  and t2 represent arbitrary times at  which the state of the system is known, and T and V are the 
kinetic and strain energies, respectively. The kinetic energy of the beam is found in reference 12 as 

T = Jo’ p [Ak2 + Air2 + A2i12 + Ixxh2 + Izz(ir’)2 + Iyy(2i1’)2] dx 

and the strain energy follows similarly from reference 13 as 

1 
2 

V = - Jo’ [ E A ( u ’ ) ~  + E I z z ( ~ ” ) 2  + EIyy(~”)2 + GJ(8’)2]  dx (3) 

The continuous problem associated with the continuous displacements u,  w, w, and 8 is discretized by 
introducing discrete degrees of freedom qi which are related to the continuous displacements according to 

u = Nrq: 
i = l  

i=l  

P U J  

i=l 
w = N y q y  

Po 
8 = Nfqg 

i = l  

(4) 

Substituting equations (4)  through (7) into equations (2) and (3) expresses the kinetic and strain energies 
in terms of discrete degrees of freedom. The application of Hamilton’s principle (eq. (1)) then leads to the 
identification of the following nonzero terms which appear in the element mass and stiffness matrices: 

4 

M G  = l p  [ A N y N y  + Iyy(N,”)’(Nj”)’]  dx 



1 M& = 1 pIxxNi  e e  Ni dx 

Kt’ = 1 EA(N,’”)’(N;)’ dx 
1 

Shape Functions 
The discrete degrees of freedom are divided into two sets, external and internal. The 12 external degrees 

of freedom, which are depicted in figure 2, correspond to the usual definition of the physical nodal degrees 
of freedom for a beam finite element (ref. 14). The internal degrees of freedom have no physical significance 
but are simply the coefficients of the higher order shape functions. These internal degrees of freedom serve 
to increase the accuracy of the transformation from the discrete problem having a finite number of degrees of 
freedom to the continuous problem having an infinite number of degrees of freedom. The number of internal 
degrees of freedom used in the beam element is specified by the data input file and may vary from zero to 
theoretically infinite. Setting Pu = Pe = 2 and P,, = Pu, = 4 in equations (4) through (7) will lead to the 
classical 12-degree-of-freedom beam element. Increasing any of these P’s adds internal degrees of freedom to 
the element. The shape functions Ni are usually taken to be polynomials although in theory they can be any 
set of functions. 

Shape Functions for u and 8 

The shape functions N,’” and N! are identical and have Co-type continuity. That is, continuity is enforced 
across element boundaries, but continuity of the derivatives across element boundaries is not enforced. Shape 
functions satisfying Co continuity will be denoted by N,” (i.e., NF = NB = N:). The first two shape functions 
in this set are the well-known linear polynomials (ref. 15) 

X N: = - - +  1 
1 

X N: = - 
1 

The higher order Co-type shape functions used herein were derived subject to two requirements: First, the 
Co continuity is enforced by restricting the higher order shape functions to be zero at the element boundaries, 
and second, the set of higher order polynomials must be orthogonal with respect to their first derivative. 
Orthogonality of the first derivative was chosen over polynomial orthogonality because the element mass and 
stiffness matrices obtained by requiring first-derivative orthogonality contain fewer nonzero terms; thus explicit 
integration is facilitated. This also results in matrices which are better conditioned than those obtained from 
orthogonal shape functions. These requirements are expressed mathematically by the following equations: 

( 2  2 39.i 2 3) 
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The first three higher order Co-type shape functions in the set defined by equations (18) through (20) are 

In general, once N; is known, the i + 1 shape function can be found from the recursive formula 

N:+1 = fa! + xn! )N:  - ypN:-i (i 2 2) 

where 

O A  2i - 3 ) d Z T  
"i - 

Shape Functions for v and w 

The shape functions NT and NY require C1-type continuity, meaning that both the functions and their 
first derivatives must be continuous across element boundaries. The shape functions N f  and NY are identical 
except that NY = -N$ and N r  = - N l  to ensure that the discrete rotational degrees of freedom 45 and 411 
have the sense indicated in figure 2. Shape functions satisfying C' continuity will be denoted by N; (Le., 
Nf = X(i)NY = Nil). The first four C1-type functions for the beam element are (ref. 15) 

x3 x2 
13 12 

N;  = 2- - 3 -  + 1 

x3 x2 
N i  = - - 2 -  + x  

12 1 

1 x3 22 

13 12 
N3 = -2- + 3 -  

N i = - - -  2 3  2 2  

12 1 

The derivat,ion of the higher ordcr C1-type shape functions employed in this paper is based on the same 
philosophy as the derivation of the Co-type shape functions. To ensure C' continuity the higher order shape 
functions must have zero slope and displacement at the element boundaries. Consistent with the previous 
discussion on the orthogonality properties of the Co-type shape functions, the C1-type shape functions are 
required to be orthogonal in their second derivative. The specific requirements are 
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(Nj)’(O) = 0 ( 2  2 5 )  

Ni(1 )  = 0 

( N i ) / ( l )  = 0 

( 2  2 5) 

( 2  2 5) 

The first three higher order C1-type shape functions in the set defined by equations (32) through (36) are 

316 15 214 313 + 212 
7x6 x5 1sX4 lox3 - - 7 - + - - -  (39) 

If N; is given, Ni can be found from the recursive relation 

where 

(i 2 5) 

Matrix Functions 
Inspection of equations (2) and (3) indicates that there are eight cross-sectional properties associated with 

a beam element. Two of them, p A  and E A ,  are represented by the quadratic polynomial 

The remaining six properties, pIxx, p l y y ,  pIzz, G J ,  E l y y ,  and E I z z ,  are represented by the quartic 
polynomial 

4 3 2 (45) P4(x) = a4x + a32 + a2x + a15 + a0 

Because these polynomials can represent any of the aforementioned cross-sectional properties by substituting 
in the appropriate values for the coefficients ai ,  equations (44) and (45) are referred to herein its “generic 
c r ~ s s - s c c t i ~ ~ d  pyqxrty pdynomials.” Note that P~(x) is a subset of P4(z), and, therefore, the coefficients a0 
through a2 refer to both polynomials. The context in which the coefficients are used wiii cieariy specify whkh 
generic cross-sectional property polynomial is being referenced. 

Substituting the generic cross-sectional property polynomials for the actual cross-sectional properties in 
equations (8) through (15) and substituting generic No or N1 shape functions for the displacement-specific 

7 



shape functions, the 10 terms in equations (8) through (15) are reduced to 5 unique terms. These five unique 
terms are referred to herein as ‘‘matrix functions,” and have the following definitions: 

1 S$ = 1 P4(x)Ni 0 0  Nj dx 

Stp = lP4(x)(N:)’(N,0)’ dx 

S i j  = 1 P~(x)N;N~ dx 
1 

(47) 

(48) 

The matrix functions are functions of a cross-sectional property which is shown as an argument in 
parentheses when appropriate, for example, SZj(pA).  The expressions for the nonzero terms in the mass and 
stiffness matrices given by equations (8) through (15) can now be expressed in terms of the matrix functions 
as follows: 

where 
-1 (i = 2 or 4) 
1 (Otherwise) 

X ( i )  = (59) 

Explicit expressions for the five sets of matrix functions for i = 1,oo and j = i, 00 are given in appendix A. 
Expressions for j = 1, i  - 1 are not given because the matrix functions are symmetric (i.e., Si,j = Sj,i). 

Element Mass and Stiffness Matrices 
The nonzero mass and stiffness terms given by equations (51) through (54) and equations (55) through 

(58), respectively, must be appropriately assembled to form the element mass and stiffness matrices. This 
procedure depends on the arrangement of the discrete degrees of freedom in the element vector of unknowns. 
The first 12 degrees of freedom in the vector of unknowns are the external degrees of freedom associated with 
the classical beam element. The higher order (internal) degrees of freedom are positioned after the external 



degrees of freedom in the vector of unknowns. Specifically, all the internal 9"'s are grouped together, then all 
the internal 9''s are grouped together, and so on. The final arrangement of unknowns is given as follows: 

91 

92 

93 

94 

95 
96 

97 
98 

99 
910 

91 1 

912 

913 

912+Pu-2 

Q13+Pu-2 

91 2+ Pu - 2+ Pv -4+ Pw -4 

913+P,-2+P,,-4+Pu,-4 

912+P,-2+P,, -4+Pu,-4+p0-2 

Mass Matrix 

The element mass matrix is partitioned into several submatrices consistent with the arrangement of the 
degrees of freedom in the vector of unknowns given in equation (60). This leads to a matrix of the form 

I 
L 1 

J 

The submatrix MEE is termed the external submatrix because it is associated only with the external degrees 
of freedom. This submatrix, which is given by the following equation, is a 12 by 12 matrix and reduces to the 
classical consistent mass matrix for constant cross-sectional properties: 
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M E E  = 

~ 

syni 0 

The submatrices MkI, MLI, ME!, and Mhr couple the external and internal degrees of freedom in the 
element mass matrix. These submatrices, which are shown in equations (63) through (66), are variable sized 
arrays of an order'equal to 12 by the number of internal degrees of freedom corresponding to the particular 
continuous variable. For example, let Pu represent the number of discrete degrees of freedom associated with 
u. Then, because there are always two external discrete degrees of freedom associated with u, the dimensions 
of MkI are 12 by Pu - 2. It is of interest to note that the coupling terms associated with the higher order 
internal degrees of freedom become zero if a sufficient number of internal degrees of freedom are included. 
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MEl = 

0 ... 

0 . . .  
0 . . .  
0 . . .  

0 . . .  
0 . . .  

0 ... 

0 ... 
0 ... 

0 ... 
0 ... 

0 ... 
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M E I  = 

I t I  = 

. . .  0 0 . . .  

... 0 0 . . .  

... 0 0 . . .  

. . .  sy&dxx) 0 . . .  

. . .  0 0 . . .  

. . .  0 0 . . .  

... 0 0 . . .  

. . .  0 0 . . .  

. . .  0 0 . . .  

. . .  s,o~,(pzxx) 0 . . .  

... 0 0 . . .  

. . .  0 0 . . .  

The mass submatrices corresponding to the internal degrees of freedom are given by the following equations 
(eqqs. (67) through (70)). Note that these submatrices are symmetric and banded. Their size depends on the 
number of internal degrees of freedom employed for a particular continuous variable. Given that Pv is the 
number of discrete degrees of freedom associated with and that there are always four external degrees of 
freedom associated with v, the size of MYI is Pv - 4 by Pv - 4. 
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Myl = 

MYl = 

M!r = 

. .  . .  . .  

Stiffness Matrix 

The stiffness matrix is partitioned similar to the mass matrix and has the form 

K =  

13 



The external stiffness submatrix K E E  is given by the 12 by 12 matrix in the following equation and reduces 
to the classical beam element stiffness matrix for constant cross-sectional properties. 

The submatrices K k I ,  K L z ,  K E z ,  and K'& couple the external and internal degrees of freedom in the element 
stiffness matrix and are given by the following equations. These submatrices have the same dimensions and 
properties as the corresponding external-internal coupling mass submatrices (eqs. (63) through (66)) discussed 
previously. 

Kk, = 

14 

0 . . .  

0 . . .  

0 . . .  

0 . . .  

0 . . .  

0 . . .  

0 ... 

0 . . .  

0 . . .  

0 . . .  

0 . . .  

0 . . .  

(73) 



KkI = 

0 0 ... 0 0 ... - 

0 0 ... 0 0 ... 

0 0 . . .  0 0 ... 

q p )  q,;(GJ) . . . S!,{(GJ) 0 . . . 

0 0 . . .  0 o . . .  
0 0 ... 0 0 ... 

0 0 ... 0 0 ... 

0 0 . . .  0 0 ... 

!! 0 ... 0 0 . . .  

K& = 

... 0 

. . . S : ; ~ ( E I , , )  

. . .  0 

... 0 

. . .  0 

. . . S l ; p ( E I z z )  

... 0 

. . . s : , { ~ ( E I ~ ~ )  

. . .  0 

. . .  0 

... 0 

. . . s , ' ~ ~ ( E I ~ ~ )  

0 . . .  

0 ... 
0 ... 
0 . . .  

0 ... 

0 . . .  

0 . . .  

0 . . .  

0 ... 
0 ... 

0 . . .  

0 . . .  

0 . . .  

0 ... 

S ~ : ~ ( E I , , )  . . . 

0 ... 

-S.$;P(EIyy) . . . 

0 ... 

0 ... 

0 ... 

s : ; ~ ( E I ~ ~ )  . . . 

- s , ' ; P ( E I ~ ~ )  . . . 
0 ... 

0 ... 

0 0 ... 

0 0 ... 

s $ ~ ( E I ~ ~ )  o ... 

0 0 ... 

-S ; ;P(EZyy)  0 ... 

0 0 . . .  

0 0 ... 

0 0 . . .  

S ; , { ~ ( E I , , )  o ... 

0 0 ... 

-S; ;p(EZyy)  0 . . .  

0 0 ... 

KBEr = 

(74) 

(75) 
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The stiffness submatrices associated with the internal degrees of freedom have similar characteristics as 
their mass counterparts and are defined as follows: 

. .  . .  . .  

KYI = 

S!;(GJ) S!j,<(GJ) . . .  S!jf;(GJ) 0 0 0 ... 

S:,<(GJ) S t g ( G J )  ... S:,;(GJ) 0 0 . . .  

syn1 SZ,:(GJ) S$(GJ) . . .  $ - { ( G J )  0 . . .  

. .  . .  . .  

. . .  

. . .  

. . .  

. . .  

. . .  

All the relations needed to completely define the tapered pversion beam element for an arbitrary number 
of internal degrees of freedom are now in hand. These include the matrix definitions given in equations (61) 
through (80), the definition of the cross-sectional property polynomials given by equations (44) and (45), and 
the explicit expressions for the five sets of matrix functions given in appendix A. 

Numerical Validation and Preliminary Performance Analysis 
The beam element developed herein is capable of emulating four different types of beam elements: uniform 

h-version, uniform p-version, tapered h-version, and tapered p-version. A uniform (h- or p-version) element 
is created by restricting a1 through a4 to be zero in the generic cross-sectional property polynomials. An 
h-version (uniform or tapered) element is created by restricting Pu = Po = 2 and Pv = Pw = 4. Once the 
uniform versions of the element are validated, they can be used to approximate a tapered geometry for the 
purpose of validating the tapered versions of the element. Similarly, the pversions of the element should 
converge to the same results as the h-versions of the element. 
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Computational Approach 

Numerical results for most of the cases analyzed were computed on an IBM Model 80 computer operating 
at 16 MHz and equipped with an 80387 math coprocessor and running PC-DOS 3.3. Because of computer 
core limitations, those uniform h-version cases containing 15 or more elements were run on a DEC 3200 
VAX workstation running VMS. However, all computations used eight-byte floating-point representation of 
real numbers conforming to the IEEE standard (default on the IBM computer but requires a /G compiler 
option on the VAX computer). Because the computer code used to generate these results was not written to 
take advantage of the symmetry and bandedness of the global miass and stiffness matrices, a fair comparison 
of compute times cannot be given. The only measure of computational efficiency presented is the number of 
degrees of freedom versus the accuracy of the models. The eigenvalue extraction technique used is a combination 
of the determinant search method and inverse iteration (ref. 16). The determinant search phase employs both 
the bisection method and the secant method to converge to an eigenvalue. Inverse iteration is then used to 
obtain the associated eigenvector. 

Validation of Uniform h- and p-Versions 

A uniform beam element can be validated rather easily because closed-form solutions to the axial and 
torsional vibrations and “nearly closed-form” solutions to the bending vibration problem exist. (See ref. 12.) 
The derivation of the closed-form expressions for these frequencies is presented in appendix B because the 
derivations commonly found in the literature do not include the rotary inertia terms. 

The uniform, cantilevered steel beam with a circular cross section shown in figure 3 was used to validate 
the uniform versions of the element developed herein. Representative h- and pversion finite-element models of 
the beam are also shown in figure 3. The material properties of the beam used in the numerical studies were 
as follows: 

E = 30.0 x lo6 lb/in2 

G = 11.6 x lo6 lb/in2 

lb-sec2 /in4 0.284 p = -  
386.4 

For validation of the uniform versions of the finite element developed herein, the lowest frequencies of this 
beam were calculated “exactly” using the closed-form solutions in appendix B and numerically using both the 
h- and p-version elements. The first four bending frequencies, the first torsional frequency, and the first axial 
frequency, from appendix B, are 

fvl = 27.4651 HZ 

fv2 = 171.6155 HZ 

fv3 = 478.2670 HZ 

fv4 = 930.8451 HZ 

fel  = 523.4749 HZ 

ful = 841.7997 HZ 

These six frequencies will be regarded as “exact” for the purpose of validating the uniform h- and p-versions 
of the beam element. Table I shows the frequencies obtained using the uniform h-version of the finite element 
as the number of elements used was varied from 1 to 14. The exact frequencies are given at the bottom of 
the table for reference. Although only the first bending frequency truly converged with 14 elements, the other 
frequencies are nearly converged (within 0.06 percent). 

Table I1 shows the frequencies obtained using one pversion element as the number of internal degrees of 
freedom is increased from 0 to i 3  for each of the f a r  c s c t i ~ f i n 1 ~  displacements. That is, in table 11, 13 internal 
degrees of freedom refers to 13 internal degrees of freedom each for u, 21, w, and 8 ,  for an aggregate total of 
52 internal degrees of freedom. Again, the exact frequencies are noted at the bottom of the table for reference. 
It is clear that all the listed frequencies have converged with 13 internal degrees of freedom, and that the 
converged values are essentially equal to the exact values. In figures 4 through 9 the information in tables I 
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and I1 is plotted in terms of the percent error versus the number of degrees of freedom. The plots clearly show 
that both the p-version element and the h-version element converge to the exact answer, and that the pversion 
element has a faster convergence rate than the h-version element. 

Validation of Tapered h- and p-Versions 

The tapered steel beam with circular cross section shown in figure 10 was used to validate the tapered 
versions of the finite element developed herein. Also shown in figure 10 are representative h- and p-version 
models. Because the results shown in tables I and I1 have validated the uniform versions of the beam element, 
the exact frequencies of the tapered beam can be determined with a uniform h-version model if a sufficiently 
large number of elements are employed. 

The frequencies obtained for the tapered beam using uniform h-version finite elements are presented in 
table 111. It should be noted that the frequencies in table 111 approach the converged values from below 
(whereas in tables I and 11, the frequencies converge from above). Also, the number of elements required to 
reach convergence for the tapered beam is over seven times that required for a cornprsh!e 1~1lifnrrn b e a ~  
Bot,h these hehivisrs c ~ i i  ?x explained by the tact that, as uniform elements are added, the geometry of the 
model is changing. The geometry approaches a smoothly tapered beam as the number of elements in the model 
approaches infinity. Here, the model is assumed to be converged with 100 elements (600 degrees of freedom). 

The frequencies predicted by using a tapered h-version finite-element model are shown in table IV. In this 
case the geometry of the problem is represented exactly using one element, and therefore the geometry of the 
model is not changed as the number of elements is increased. It should be noted that now convergence is from 
above and is achieved using approximately one seventh as many elements as in table 111. 

Table V shows the frequencies which were obtained for the tapered beam using one tapered pversion 
element and varying the number of internal degrees of freedom from 0 to 19. With 19 internal degrees of 
freedom, 22nd order polynomials are used for lateral bending and 20th order polynomials for the axial and 
torsional displacements. The reason for showing the results of such a high order element is to demonstrate the 
numerical stability of the element. It is seen that the p-version results in table V converge very close to the 
values predicted by the h-version beams in tables I11 and IV but with the use of far fewer degrees of freedom. 

The data in tables I11 through V are graphically depicted in figures 11 through 16 in terms of percent error 
versus the number of degrees of freedom. These figures show the dramatic improvement in convergence which 
is realized by using tapered h- and p-version elements instead of uniform h-version elements. 

Conclusions 
The derivation, and validation, of a new, tapered, p-version beam element which both facilitates convergence 

checks and produces a better convergence rate than nontapered, h-version beam elements has been described. 
These two characteristics complement each other and, when combined, provide a powerful and versatile beam 
element which is easy to use. The shape functions on which the element is based were derived by using 
orthogonality relationships which produce element matrices that are extremely well-conditioned and of a form 
allowing explicit integration in the derivation of the element matrices. The latter feature eliminates the need 
for numerical quadrature; thus, roundoff error is reduced. The shape functions are hierarchical such that higher 
order element matrices can use the element matrices from previous lower order analyses. This simplifies the 
derivation, coding, and validation of the element. The present form of the beam element has been derived in a 
manner which allows for an infinite number of internal degrees of freedom. The beam element has been tested 
with up to 22nd order C',type shape functions and up to 20th order Co-type shape functions with no evidence 
of ill conditioning or significant roundoff error. 

NASA Langley Research Center 
Hampton, VA 23665-5225 
June 23, 1989 
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Appendix A 

Expressions for Matrix Functions 
Explicit expressions for the matrix functions are presented in this appendix. Each matrix function is a 

function of the element length 1 and the coefficients from the generic cross-sectional property polynomials, a0 
through a4. 

The definition of the So set is 

and the explicit integrations are 

sf,i = - 2 d m  [(i - 5)(33i4 - 685i3 + 4990i2 - 149102 + 15492)a4Z4 
i=3,8 + 2(i - 8)(23i4 - 416i3 + 2697i2 - 7419i + 7305)a313 

+ 6(i - 8 ) ( i  - 7)(8i3 - 90i2 + 3222 - 365)a2z2 
+ 4(i - 8 ) ( i  - 7)(i - 6)(i - 4)(4i - 5)all  
+ 35(i - 8 ) ( i  - 7)(i - 6)(i - 5)(2i - 5)ao] 

/[168(587i5 - 15825i4 + 166115i3 - 846075i2 + 20877985 - 1994340)l 

S2,i - - 1 d m  [(283i5 - 7825i4 + 84335i3 - 442025i2 + 1124532i - 1108260)~41~ 
i=3,8 + 5(i - 8)(50i4 - 995i3 + 7224i2 - 226412 + 25770)a313 

+ 3(i - 8 ) ( i  - 7)(68i3 - 905i2 + 39072 - 5440)a212 
+ 3(i - 8 ) ( i  - 7)(i - 6)(52i2 - 4132 + 785)ail 
+ 35(i - 8 ) ( i  - 7)(i - 6)(i - 5)(4i - 13)aoI 

/ [168(587i5 - 15825i4 + 166115i3 - 846075i2 + 20877985 - 1994340)l 

s& = 0 
i = 9 p  

So. a,a = 1(2i - 3)[3(7i4 - 42i3 + 7i2 + 1682 + 60)a414 

+ 2(2i + 3)(2i - 9)(5i2 - 152 - 8)a212 

i=3~co + (2.; + -1)!2i - 9)(7 i2  - 21i - 10)a31 3 

+ 4(2i + 3)(2i + 1)(2i - 7)(2i - 9 ) ( ~ 1 1 +  2ao)] 
/[16(2i + 3)(2i + 1)(2i - 1)(2 i  - 3)(2i - 5)(2i - 7)(2i - 9)] (-49) I 
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SzP,i+l = - l 2 d m d n [ 6 ( i  - l)(i2 - 2i - 5)a413 
i=3,m + (i - 1)(7i2 - 14i - 36)a3l2 + 2(i - l)(2Z + 3)(2i - 7)(a2l + ai)] 

/[16(2i + 3)(2i + 1)(2i - 1)(2i - 3)(2i - 5)(2i - 7)] (A10) 

S&+2 = - 1 d ~ d ~ [ 1 5 ( i 2  - i - 10)(i2 - i - 8)a414 
i=3,m + 8(i + 2)(i - 3)(2i + 5)(2i - 7)a313 + 8(2i + 5)(2i - 7)(2i2 - 2i - 9)a2l2 

+ 8(2i + 5)(2i + 3)(2i - 5)(2i - 7)(Ull + 2 ~ ) ]  
/[64(2i + 5)(2i + 3)(2i + 1)(2i - 1)(2i - 3)(2i - 5)(2i - 7)] ( A l l )  

S$+3 = l2&%-?d~[1OZ(i2 - 7)a413 + i(13i2 - 85)a312 
i=3 t00  +4i(2i + 5)(2i - 5)(a21! + ai)] 

/[32(22 + 5)(2i + 3)(2i + 1)(2i - 1)(2i - 3)(2i - 5)] 

So. a,a+4 = - l 3 d n d m [ ( i  + l)i(13i2 + 13i - 116)a412 
i = 3 t 0 0  + (i + l ) i (2 i  + 7)(2i - 5)(3~31 + h 2 ) ]  

/[32(2i + 7)(2i + 5)(2i + 3)(2i + 1)(2i - 1)(2i - 3)(2i - 5)] 

i 4 ~ m d m ( 2  + 2)(i + i)i(2a41 + a3)  
= 32(2i + 7)(2i + 5)(2i + 3)(2i + 1)(2i - l)(2i - 3) i=3.x 

- d m d m ( i  + 3)(i + 2)(i + l)ia415 
s29.z+6 = 64(2i + 9)(2i + 7)(2i + 5)(2i + 3)(2i + l)(2i  - 1)(2i - 3) i=3,cc 

so. . = o  
W + J  

i=3,00, j=7,00 

The definition of the Sop set is 

and the explicit integrations are 

s o p  = . - 12a414 + 15a313 + 20a2l2 + 30al l+ 60ao 
1.2 601 

Sy: = d m [ 3 ( 2 9 i 3  - 406i2 + 1833i - 2644)a413 
i=3,6 + 3(2 - 6)(25i2 - 202i + 387)a312 + 2(i - 6)(i - 5)(26i - 83)a21 

+ 1 O ( i  - 6)(i - 5)(i - 4)a1]/[30(47i3 - 628i2 + 27292 - 3792)I 

20 

(A121 



S2,i O P  = - J m [ 3 ( 2 9 i 3  - 406i2 + 18332 - 2644)a4Z3 + 3(i - 6)(25i2 - 2022 + 387)a3Z2 
i=3f6 + 2(i - 6)(i - 5)(26i - 83)~2Z+ 1 O ( i  - 6)(i - 5)(i - 4 ) ~ 1 ]  

/ [30(47i3 - 628i2 + 27292 - 3792)] (-423) 

sg  = o  
i=7,m 

Stf = [(35i4 - 210i3 + 305i2 + 302 - 88)(2i - 3)a4Z4 
+ 2(2i + 1)(2i - 3)(2i - 7)(5i2 - 152 + 7)a3Z3 
+ 4(2i + 1)(2i - 3)(2i - 7)(3Z2 - 92 + 4)a2Z2 
+ 4(2i + 1)(2Z - 1)(% - 3)(2i - 5)(2i - 7)(al l+ 2 ~ o ) ]  
/[8l(2i + 1)(2i - 1)(2i - 3)(2i - 5)(2i - 7)] 

i=3,00 

Stf+l = - d m d m [ 2 ( i  - 1)(7i2 - 142 - 8)a4Z3 
i=3,00 + 3(i - 1)(5i2 - 1 O i  - 6)a3Z2 

+ 4(i - 1)(22 -k 
/[8(2i + 1)(2i - 1)(2i - 3)(2i - 5)] 

- 5)(a21 + al)] 

@:+2 = d m d m [ 2 i ( i  - 1)(7i2 - 7i - 26)a4Z3 
i=3,00 + i(i - 1)(2i + 3)(2i - 5)(3a3Z2 + 2a2Z)] 

/[8(2i + 3)(2i + 1)(2i - 1)(2i - 3)(2i - 5)] 

SOP - - d m d m ( i  + l ) i ( i  - 1)(2a4Z3 + a3Z2) 

8(2i + 3)(2i + 1)(2i - 1)(2i - 3) 2,2+3 - 
i=3,00 

op - &ZTdZG(Z + 2)(i + l)i(i - l)a4Z3 
Si,i+4 - 16(2i + 5)(2i + 3)(2i + 1)(2i - 1)(2i - 3) i=3,00 

The definition of the S1 set is 
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and the explicit integrations are 

1 2 (  19a212 + 3 6 ~ 1 l  + 78ao) 
2520 

s;,4 = - 

12(25a212 + 42all+ 78ao) 
2520 521,s = 

13(5a2Z2 + gall + l8ao) 
2520 

= - 

S:,i = d m [ ( 2 0 6 i 5  - 7725i4 + 114020i3 - 827175i2 + 2947034i - 4122960)a2l3 
i=5,10 + (i - 10)(173i4 - 5005i3 + 53215i2 - 245915i + 416292)a1l2 

+ 2(i  - l O ) ( i  - 9)(i  - 7)(69i2 - 11362 + 3892)aolI 

/[1260(4759i5 - 174190i4 + 2512445i3 - 17844110i2 + 624048963 - 85980000)] 

s;,$ = 0 
i=l l ,m 

Si,i = d m [ ( 6 2 i 5  - 2315i4 + 34000i3 - 245305i2 + 868878i - 1208400)a2l4 
+ 2(i - 1O)(i - 8)(i - 6)(33i2 - 4682 + 1499)a1Z3 

/[10080(434i5 - 15875i4 + 229060i3 - 1628305i2 + 57010862 - 7864620)l 

i=5,10 

+ (i - 1 O ) ( i  - 9)(26i3 - 661i2 + 49612 - 11476)a012] 

si,+ = 0 
i=ll,w 
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Si,i = - J m [ 5 ( 1 5 6 i 5  - 5983i4 + 90554i3 - 675437i2 + 24803025 - 3583344)a213 
i=5,10 + 5(i - 10)(109i4 - 3167i3 + 33983i2 - 159337i + 274980)a1E2 

+ 2(i - lO)(i - 9)(i - 7)(111i2 - 17242 + 5908)aolI 

/[1260(4759i5 - 174190i4 + 2512445i3 - 17844110i2 + 62404896.1 - 85980000)] 

Si,$ = 0 
i=ll,cc 

Sj,i = - d m [ 6 ( 8 i 5  - 275i4 + 3670i3 - 23685i2 + 73642i - 87900)a214 
i=5,10 + 5(i - 10)(22i4 - 573i3 + 5474i2 - 22743i + 34716)a1Z3 

+ (i - lO)(i - 9)(176i3 - 3141i2 + 183712 - 35276)a012] 

/[10080(434i5 - 15875i4 + 229060i3 - 1628305i2 + 5701086i - 7864620)l 

Si,$ = 0 
i=ll,cc 

2i - 5)1[(7i2 - 352 - 18)a2l2 + 3(2i + 1)(2i - l l ) ( a l l  + 2 q ) ]  SI-. = ( 
2,2 16(2i + 1)(2i - 1)(2i - 3)(2i - 5)(2i - 7)(2i - 9)(2i - 11) i=5,cc 

J m J - ' ( i  - 2)l2(a21 + al)  S! .  
2%2+1 = -16(2i + 1)(2i - 1)(2i - 3)(2i - 5)(2i - 7)(2i - 9) i=5,00 

Z J ~ d ~ [ ( 1 7 i 2  - 512 - 126)a2Z2 + 8(2i + 3)(22 - 9)(a11+ 2ao)] s:i+2 = - 
64(2i + 3)(2i + 1)(2i - 1)(2i - 3)(2i - 5)(2i - 7)(2i - 9) i=5.cc 

312J2C5JZTi(i  - 1)(a21+ a l )  
s'1i+3 = 32(2i + 3)(2i + 1)(2i - l)(2i  - 3)(2i - 5)(2i - 7) i=5,00 

l J m d m [ ( i  + 4)(2 - 5)a212 + (22 + 5)(2i - 7)(all + 2ao)] 
32(2z + 5)(2i + 3)(2i + 1)(2i - 1)(2i - 3)(2i - 5)(2i - 7) St!,i+4 = 

i=5,cc 

SI-. ~ ~ J 2 C 5 @ T 5 i ( a 2 1 +  al)  
212+5 = -32(2i + 5)(2i + 3)(2i + 1)(2i - 1)(2i - 3)(2i - 5) i=5,00 

J7GT,/5GT(i + 1)ia2l3 
= 64(2i + 7)(2i + 5)(2i + 3)(2i + 1)(2i - 1)(2i - 3)(2i - 5) i=5,cc 



The definition of the S1‘ set is 

and the explicit integrations are 

10a414 + 15a313 + 24a2l2 + 42al l+ 84ao 
701 

s;; = 

5a414 + 7a313 + 10a212 + 14al l+ 14a0 
140 

$5 = 

10a414 + 15a313 + 24a2l2 + 42all+ 84ao 
701 

$5 = - 

5a414 + 5a313 + 4a212 - 14ao 
140 

s;,; = - 

1(8a414 + lla313 + 16a2l2 + 28all+ 112a0) 
840 

5;; = 

5a414 + 7a313 + 10a2l2 + 14al l+ 14a0 
140 

$5 = - 

1p - 1(10a414 + lla313 + 12a212 + 14al l+  28ao) 
840 s2,4 - - 

10a414 + 15a313 + 24a2l2 + 42a11 + 84ao) 
701 

$5 = 

5a414 + 5a313 + 4a2l2 - 14ao 
140 

sg = 

1(60a414 + 65a313 + 72a212 + 84a11 + 112a0) 
840 

sg = 

S:: = d m [ 1 2 ( 3 6 i 5  - 1330i4 + 19340i3 - 138305i2 + 4863191. - 672680)a414 
+ 1O(i - 10)(2 - 6)(47i3 - 993i2 + 6803i - 15053)a313 
+ (i - 1O)(i - 9)(419i3 - 7744i2 + 471293 - 94384)a212 
+ (i - lO)(i - 9)(i  - 8)(269i2 - 31122 + 8823)all 
+ 330(i - 1O)(i - 9)(i - 8)(i - 7)(i - 5)a0] 

i=5,10 

/[8401(687i5 - 25346i4 + 368441i3 - 2636686i2 + 9287944i - 12883260)l (-469) 

s;p = o  
i=ll,cc 



S2,i l P  = d m [ 8 ( 1 0 3 i 5  - 3795i4 + 55020i3 - 392190i2 + 13743323 - 1894305)a4Z4 
i=5,10 + (i - 10)(991i4 - 26735i3 + 266005i2 - 1157585i + 1860084)a313 

+ 4(i - l O ) ( i  - 9)(i - 6)(247i2 - 3010i + 8857)a2Z2 
+ 3(i - lO)(i - 9)(i - 8)(159i2 - 17922 + 4973)alZ 

/ [1680( 1918i5 - 71033i4 + 1035968i3 - 7434583i2 + 26251650.1 - 36487620)l 

+ 6 ( i  - l O ) ( i  - 9)(i - 8 ) ( i  - 7)(158i - 783)aoI 

si? = o  
i=ll,w 

s3 , i  lP = - d m [ 1 2 ( 3 6 i 5  - 1330i4 + 19340i3 - 138305i2 + 486319i - 672680)a414 
+ 1 O ( i  - 1 O ) ( i  - 6)(47i3 - 993i2 + 68032 - 15053)a3Z3 
+ (i - 1O)(i - 9)(419i3 - 7744i2 + 47129i - 94384)a2Z2 
+ (i - 1 O ) ( i  - 9)(i - 8)(269i2 - 3112i + 8823)ail 
+ 330(i - l O ) ( i  - 9)(i - 8 ) ( i  - 7)(i - 5)ao] 

i=5,10 

/ [840Z(687i5 - 25346i4 + 368441i3 - 2636686i2 + 9287944.1 - 12883260)l 

sg = o  
i=ll,cc 

S4,i lP = d m [ 2 ( 1 4 1 2 i 5  - 52945i4 + 782650i3 - 5698355i2 + 20426118.1 - 28825620)a4Z4 
+ 1 O ( i  - 10)(247i4 - 6828i3 + 69745i2 - 311950i + 515286)a313 
+ 2(Z - 1O)(Z - 9)(949i3 - 17989i2 + 1122342 - 230124)a2Z2 
+ 3(i - 1 O ) ( i  - 9)(i  - 8)(393i2 - 46143 + 13261)ail 
+ 6(i - 1 O ) ( i  - 9)(i - 8 ) ( i  - 7)(172i - 867)aoI 

i=5,10 

/ [1680( 1918i5 - 71033i4 + 1035968i3 - 7434583i2 + 26251650.1 - 36487620)l 

s'g = o  
i=ll,w 

S:,: = (22 - 5) [3(7i4 - 70i3 + 175i2 - 52)a4Z4 + (22 + 1)(2i - 11)(7i2 - 352 + 18)a3Z3 
i=5,00 + 2(2i + 1)(2i - 11)(5i2 - 25i + 12)a2Z2 

/[162(2i + 1)(2i - 1)(2i - 3)(2i - 5)(2i - 7)(2i - 9)(2i - ll)] 

+ 4(2i + 1)(2i - 1)(2i - 9)(2i - l l ) ( a l l  + ~ u o ) ]  

sz',r+1 = - d m d m [ 6 ( 2  - 2)(i2 - 42 - 2)a413 + (i - 2)(7i2 - 282 - 15)a3Z2 
2=5jm + 2(i - 2)(2i 4- - g)(@Z al)] 

/[16(2i + 1)(2i - 1)(2i - 3)(2i - 5)(2i - 7)(2i - 9)] 

Sz!,r+2 = - d 2 = d m [ 1 5 ( i 2  - 3i - 8)(i2 - 3i - 6)a4Z4 + 8(i + l)(i - 4)(2i + 3)(2i - 9)a3Z3 
i=5,00 + 8(2i + 3)(2i - 9)(2i2 - 62 - 5)a2Z2 + 8(2i + 3)(2i + 1)(2i - 7)(2i - 9)(a12 + 2ao)] 

/[641(2i + 3)(2i + 1)(2i - 1)(2i - 3)(2i - 5)(2i - 7)(2i - 9)] (-479) 
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Sj,r+3 = d m d = [ l O ( i  - l ) ( i 2  - 2i - 6)a413 + (i - 1)(13i2 - 26i - 72)a3l2 
i = 5 ~  + 4(i - 1)(2i + 3)(2i - 7)(a2l + al)]  

/[32(2i + 3)(2i + 1)(2i - 1)(2i - 3)(2i - 5)(2i - 7)] 

= - d m d m [ i ( i  - 1)(13i2 - 13i - 116)a413 
i=5,cc + i(i - 1)(2i + 5)(2i - 7)(3a312 + 2a2l)] 

/[32(2i + 5)(2i + 3)(2i + 1)(2i - 1)(2i - 3)(2i - 5)(2i - 7)] 

d m d m ( i  + l ) i ( i  - 1)(2a413 + a312) S!P  - 
- 32(2z + 5)(2i + 3)(2i + 1)(2i - l)(2i  - 3)(2i - 5) i = 5 m  

rrl P J r n , . r n ( i  + 2) (1+  Ijh(.I I)&X 
”i’is6 i = 5 m  = -64(2i + 7)(2i + 5)(2i + 3)(2i + 1)(2i - 1)(2i - 3)(2i - 5) 

Finally, the definition of the SlPp set is 

1 
S:,y = 1 P4(x)(N;)”(Nj’)” dx 

and the explicit integrations are 
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pP - 3(44a414 + 49a313 + 56a212 + 70all+ 140ao) 
3513 S1,l - 

pP - 38a414 + 42a313 + 49a2l2 + 70all+ 210ao 
3512 s1,2 - 

1pp - - 3(44a414 + 49a313 + 56a212 + 70al l+ 140ao) 
3513 s1,3 - 

1pp - 94a414 + 105a313 + 119a212 + 140all+ 210ao 

1pp - 36a414 + 42a313 + 56a212 + 105all+ 420ao 

3512 s1,4 - 

1051 s 2 , 2  - 

38a414 + 42a313 + 49a212 + 70al l+ 210ao 
3512 

s g p  = - 

lpp - 78a414 + 84a313 + 91a2l2 + 105all+ 210ao 
1051 s2,4 - 

1pp = 3(44a414 + 49a313 + 56a212 + 70al l+ 140ao) 
3513 s3 ,3  



l p p  = - 94a414 + 105a313 + 119a212 + 140all+ 210ao 
53,4 3512 

204a414 + 231a313 + 266a212 + 315all+ 420ao 
1051 

s g p  = 

Sipp 14 = - d n [ 3 ( 4 5 i 3  - 904i2 + 5965i - 12902)a413 
i=5,8 + 3(2 - 8)(38i2 - 463i + 1383)a312 + 2(i - 8 ) ( i  - 7)(41i - 219)a21 

+ 28(i - 8 ) ( i  - 7)(i - 6)a1]/[7Z2(68i3 - 1329i2 + 85512 - 17970)l 

s ; y  = 0 
i=9,cc 

Si;' = d n [ 2 ( 5 0 i 3  - 996i2 + 6526i - 14061)a413 
i=5,8 + 12(i - 8)(7i2 - 85i + 255)u3l2 + (i - 8 ) ( i  - 7)(62i - 345)a21 

+ 42(i - 8 ) ( i  - 7)(i - 6)a1]/[2521(4i3 - 77i2 + 4832 - 995)] 

S j r p  = d m [ 3 ( 4 5 i 3  - 904i2 + 5965i - 12902)a413 
i=5,8 + 3(i - 8)(38i2 - 4632 + 1383)a312 + 2(i - 8) ( i  - 7)(41i - 219)a21 

+ 28(i - 8 ) ( i  - 7)(2 - 6)a1]/[7E2(68Z3 - 1329i2 + 85512 - 17970)l 

sgp = 0 
i=9,cc 

(A100) 

(A101) 

S4,i lPp = d m - [ 2 ( 7 4 i 3  - 1485i2 + 9811i - 21333)a413 
i=5,8 + 3(2 - 8)(2i - 11)(19i - 129)a312 + (i - 8)(2 - 7)(76i - 429)a21 

+ 42(i - 8 ) ( i  - 7)(i - 6)a1]/[2521(4i3 - 77i2 + 483i - 995)] (A102) 

sip' = 0 
i = 9 p  

(A103) 

SLpp = (22 - 5) [(35i4 - 350i3 + 1145i2 - 13502 + 432)a414 
i = 5 p  + 2(22 - 1)(22 - 9)(5i2 - 252 + 27)a3Z3 + 4(22 - 1)(2i - 9)(3i2 - 152 + 16)a212 

+ 4(2i - 1)(22 - 3)(22 - 7)(22 - 9)(a l l+  2ao)] 

/[8l3(2i - 1)(2i - 3)(22 - 5)(2i - 7)(2i - 9)] (A104) 

s;,p; = - d m d m [ 2 ( i  - 2)(7i2 - 282 + 13)a413 + 3(2 - 2)(5i2 - 202 + 9)a312 
i=5,cc + 4(2 - 2)(2i - 1)(2i - 7)(a2l+ a1)]/[812(2i - 1)(22 - 3)(2i - 5)(2i - 7)] (A105) 

(A106) 
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28 

J r n d r n i ( 2  - l)(i - 2)(2a41 + ag) S l P P  - - 
2 , 2 + 3  - 8(2i + l)(2i - 1)(2i - 3)(2i - 5) 

i=5,00 

d=dZD(i + l)i(i - l)(i - 2)a41 
2,2+4 - 16(2i + 3)(2i + 1)(2i - l)(2i - 3)(2i - 5) S l P P  - 

i=5,00 

(A107) 

(A108) 

(A109) 



Appendix B 

Derivation of Vibrations of Uniform Beam 
The derivation of the closed-form solutions to  the vibrations of a uniform beam is presented in this appendix. 

First the bending vibration problem is solved, and then the torsional and axial vibration problems are solved. 
Consider the translational displacement v only. Using the expressions for the kinetic and strain energies 

given in equations (2) and (3), respectively, and assuming harmonic motion give the following governing 
differential equation: 

When taking into account the cantilever conditions, the geometric boundary conditions are 

v‘(0) = 0 033) 

and the natural boundary conditions are 
vl‘(l) = 0 

Pw: I 
V”’(Z) + -21 (1 )  = 0 

E 
The general solution to equation (Bl )  is 

~ ( z )  = k l  eblz + k2 e-b1z + k3 cos(b2z) + k4 sin(b2z) (B6) 

where k l ,  k2, k3, and k4 are constants that depend upon the boundary conditions, and bl  and b2 are defined 
by 

b l  = 037) 

where 

2 
(BIOI P W V  A2 = - E 

Substituting the general solution given by equation (B6) into the boundary conditions (eqs. (B2) through (B5)) 
results in four linear equations for k l  through k4 that can be expressed in matrix form as follows: 

The bending natural frequencies of the beam are those which make the determinant of the 4 by 4 matrix 
in equation (B11) equal to zero. For the example described in the main text of this report, the first four 
frequencies are 
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f v l  = 27.4651 Hz 
f v 2  = 171.6155 Hz 
fv3 = 478.2670 Hz 
fv4 = 930.8451 Hz 

Now consider only the torsional displacement 8. Taking equations (2) and (3) as the kinetic and strain 
energies, respectively, and assuming harmonic motion give the following governing differential equation: 

The boundary conditions are 

e(o) = :: 
O'(Z) = 0 

With b2 = w, the general solution to equation (B12) can be written as 

8(z) = kl cos(bz) + k2 sin(bz) (B15) 

Substituting equation (B15) into the boundary conditions leads to the 2 by 2 matrix system of linear equations: 

- sin(bZ) cos(bl) 

Setting the determinant equal to zero and solving for we yields 

For the beam of figure 3, the first torsional frequency is 

( n  = 1 , 2 , .  . .) 

fe l  = 523.4749 HZ 

The governing differential equation for the axial displacement of the beam is of the same form as that for 
the torsional displacement given in equation (B12). Only the constant b is different. The natural frequencies 
can be shown to be 

w u = -  - ( n  = 1 , 2 , .  . .) 

For the beam of figure 3, the first axial frequency is 

ful = 841.7997 Hz 
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Table I. Convergence of Frequencies for Uniform, h-Version Beam 

Ndof 
6 

12 
18 
24 
30 
36 
42 
48 
54 
60 
66 
72 
78 
84 

Nelem 
1 
2 
3 
4 
5 
e 
7 
8 
9 

10 
11 
12 
13 
14 

Exact . . . 

Ndof 
6 

10 
14 
18 
22 
26 
30 
34 
38 
42 
46 
50 
54 
58 

Idof 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 ~~ 

Exact . . . 

f v l ,  Hz 
27.5953 
27.4784 
27.4679 
27.4660 
27.4655 

27.4652 
27.4652 
27.4652 
27.4652 
27.4652 
27.4652 
27.4652 
27.4652 
27.4651 

‘3- “0.- 
L I .‘iUJ3 

f v 2 ,  Hz 
2 70.34 19 
173.0589 
172.1745 
171.8138 
171.7006 
I (1.05’(5 
171.6385 
171.6291 
171.6240 
171.6211 
171.6193 
171.6182 
171.6175 
171.6 170 
171.6155 

_-_  -- -  

fV3r HZ 

581.71 78 
484.1519 
481.9206 
479.96 24 
479.1306 
478.7476 
478.554 1 
478.4485 
478.38 7 1 
478.3496 
478.3256 
4 78.3097 
478.2988 
478.2670 

1649.271 2 
1081.3530 
944.1763 
941.5603 
936.7340 
934.2196 
932.8928 
932.1524 
931.7163 
931.4469 
931.2736 
931.1583 
931.0791 
930.8451 

f e i ,  Hz 
577.2137 
537.0115 
529.4 733 
526.8447 
525.6302 
524.9711 
524.5739 
524.3162 
524.1396 
524.0132 
523.9198 
523.8487 
523.7934 
523.7495 
523.4749 

Table 11. Convergence of Frequencies for Uniform, pVersion Beam 

f v l ,  Hz 
27.5953 
27.4734 
27.4652 
27.4651 
27.4651 
27.4651 
27.4651 
27.4651 
27.4651 
27.4651 
27.4651 
27.4651 
27.4651 
27.4651 
27.4651 

f v 2 ,  Hz 
270.34 19 
173.1390 
172.5710 
171.6203 
171.6178 
171.6155 
171.6155 
171.6155 
171.6 155 
171.6155 
171.6155 
171.6155 
171.6155 
171.6155 
171.6155 

906.1908 
490.8033 
490.0998 
478.4139 
478.4039 
4 78.26 75 
478.2674 
478.2669 
478.2669 
478.2669 
478.2669 
478.2669 
478.2669 
4 78.26 70 

fV4r HZ 

2110.4920 
988.0348 
987.4482 
932.4859 
932.4643 
930.8613 
930 A613 
930.8452 
930.8452 
930.8451 
930.8451 
930.8451 
930.8451 

fe1, Hz 
577.2137 
525.440 1 
523.5106 
523.4752 
523.4749 
523.4749 
523.4749 
523.4749 
523.4749 
523.4749 
523.4749 
523.4749 
523.4749 
523.4749 
523.4749 

ful, Hz 
928.2170 
863.5679 
851.4457 
847.2186 
845 26.56 
844.2057 
843.5670 
843.1526 
842.8685 
842.6654 
842.515 1 
842.4008 
842.3119 
842.2413 
841.7997 

f u l ,  Hz 
928.21 70 
844.9599 
841.8572 
841.8003 
841.7997 
841.7997 
84 1.7997 
84 1.7997 
841.7997 
841.7997 
841.7997 
84 1.7997 
841.7997 
841.7997 
84 1.7997 
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Table 111. Convergence of Frequencies for Modeling Tapered Beam With Uniform Beam Elements 

Ndof 
6 

12 
18 
24 
30 
36 
42 
48 
54 
60 
66 
72 
78 
84 
90 

150 
300 
450 
600 

Ndof 
6 

12 
18 
24 
30 
36 
42 
48 
54 
60 
66 
72 
78 
84 

Nelem 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
25 
50 
75 

100 

Nelem 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

fvlr Hz 
36.7115 
59.6562 
71.9805 
77.8991 
80.9493 
82.6853 
83.7585 
84.4657 
84.9554 
85.3083 
85.5707 
85.7711 
85.9276 
86.0520 
86.1526 
86.5898 
86.7753 
86.8097 
86.83 73 

f v 2 ,  Hz 
358.0925 
172.5966 
187.9347 
205.9470 
218.2811 
226.0285 
230.9909 
234.31 12 
236.6301 
238.3102 
239.5654 
240.5273 
241.2805 
241.881 1 
242.3676 
244.4943 
245.4031 
245.5 723 
245.7077 

709.7736 
455.8576 
44 1.9430 
455.8657 
470.7080 
481 3723 
489.7455 
495.34 18 
499.4259 
502.4906 
504.8484 
506.70 15 
508.1846 
509.3901 
514.7164 
517.0280 
517.4313 
517.8087 

1391.3137 
1 169.02 79 
893.5114 
834.3421 
835.1067 
848.0075 
860.5784 
870.3900 
877.7242 
883.2469 
887.4925 
890.8284 
893.501 1 
895.6784 
905.4243 
909.7627 
910.5846 
91 1.2465 

fBl, HZ 
577.2137 
934.4916 

1089.9564 
1156.4921 
1189.1758 
1207.321 1 
1218.3655 
1225.5667 
1230.5 161 
1234.0613 
1236.6867 
1238.6846 
1240.2401 
1241.4746 
1242.4707 
1246.781 1 
1248.6001 
1248.9370 
1249.2228 

Table IV. Convergence of Frequencies for Tapered, h-Version Beam 

fvlr Hz 
86.9704 
86.9065 
86.8561 
86.8434 
86.8396 
86.8384 
86.8379 
86.8376 
86.8375 
86.8374 
86.8374 
86.8374 
86.8373 
86.8373 

f v 2 ,  Hz 
267.8185 
251.7443 
247.4589 
246.2835 
245.9340 
245.8121 
245.7628 
245.7400 
245.7283 
245.72 16 
245.7176 
245.7149 
245.7131 
245.7119 

533.1733 
538.7430 
526.0757 
521.0733 
519.2780 
518.5613 
518.2391 
518.0774 
5 17.9880 
5 17.9345 
517.9004 
517.8775 
517.8615 

1203.8627 
940.3664 
958.9185 
934.7022 
921.7652 
916.4367 
914.1021 
9 12.9746 
9 12.3746 
912.0268 
911.8101 
91 1.6672 
911.5687 

fell HZ 

1273.83 17 
1271.8282 
1263.2856 
1258.0545 
1255.1634 
1253.4584 
1252.3826 
1251.6647 
1251.1633 
1250.8000 
1250.5286 
1250.3208 
1250.1582 
1250.0287 

f u l ,  Hz 
928.2 170 

1255.9186 
1348.4876 
1381.3936 
1396.3582 
1404.3645 
1409.1399 
1412.2157 
1414.3128 
14 15.8068 
141 6.9088 
1417.7450 
14 18.3946 
1418.9092 
1419.3238 
1421.1123 
1421.8642 
1422.0033 
1422.1216 

ful, Hz 
1434.6550 
1432.6379 
1428.3265 
1425.9792 
1424.7097 
1423.9658 
1423.4975 
1423.1850 
1422.9669 
1422.8087 
1422.6906 
1422.6002 
1422.5294 
1422.4729 
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~~ 

Ndof 
6 

10 
14 
18 
22 
26 
30 
34 
38 
42 
46 
50 
54 
58 
62 
66 
70 
74 
78 
82 

Idof 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

f v l ,  Hz 
86.9704 
86.9555 
86.8675 
86.8417 
86.8376 
86.8374 
86.8374 
86.8373 
86.8373 
86.8372 
86.8372 
86.8372 
86.8372 
86.8372 
86.8372 
86.8372 
86.8372 
86.8372 
86.8372 
86.8372 

f v 2 ,  Hz 
267.8185 
249.6871 
248.6826 
246.2815 
245.7577 
245.7151 
245.7151 
245.7127 
245.7101 
245.7087 
245.7080 
245.7078 
245.7077 
245.7077 
245.7077 
245.7077 
245.7077 
245.7077 
245.7077 
245.7077 

607.6043 
545.9870 
537.1999 
520.7568 
517.9835 
517.9218 
517.8910 
51 7.8475 
517.8238 
51 7.8140 
51 7.8104 
51 7.8092 
51 7.8088 
517.8087 
5 17.8086 
51 7.8086 
51 7.8086 
5 17.8086 
5 17.8086 

fv4, Hz 

1173.2573 
1018.3391 
981.2253 
920.7022 
912.1356 
912.1356 
911.6613 
911.3808 
91 1.2864 
91 1.2582 
91 1.2498 
9 1 1.2473 
91 1.2466 
91 1.2464 
91 1.2463 
91 1.2463 
911.2463 
911.2463 

fOl, Hz 
1273.831 7 
1254.6750 
1249.4274 
1249.2122 
1249.2122 
1249.2093 
1249.2074 
1249.2067 
1249.2065 
1249.2064 
1249.2064 
1249.2064 
1249.2064 
1249.2064 
1249.2064 
1249.2064 
1249.2064 
1249.2064 
1249.2064 
1249.2064 

f u l ,  Hz 
1434.6550 
1434.2370 
1422.2183 
1422.1270 
1422.1223 
1422.1164 
1422.1149 
1422.1145 
1422.1145 
1422.1144 
1422.1144 
1422.1 144 
1422.1 144 
1422.1 144 
1422.1 144 
1422.1144 
1422.1144 
1422.1144 
1422.1 144 
1422.1144 
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Figure 1. Beam element showing continuous displacements and coordinate system. 
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Figure 2. Beam element showing external discrete degrees of freedom. 
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Figure 3. Uniform cantilevered beam and representative h- and p-version finite-element models. 
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Figure 5.  Percent error versus number of degrees of freedom for second bending frequency of uniform beam. 
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Figure 6. Percent error versus number of degrees of freedom for third bending frequency of uniform beam. 
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Figure 7. Percent error versus number of degrees of freedom for fourth bending frequency of uniform beam. 

Percent error 

Figure 8. Percent error versus number of degrees of freedom for first torsional frequency of uniform beam. 
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Figure 9. Percent error versus number of degrees of freedom for first axial frequency of uniform beam. 
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Figure 10. Tapered cantilevered beam and representative h- and p-version finite-element models. 

39 



100.0 E 

Percent error 

10.0 

1 .o 

.1 

.01 
1 10 100 1000 

Number of degrees of freedom 

Figure 11. Percent error versus number of degrees of freedom for first bending frequency of tapered beam. 

Percent 

100.0 

10.0 

error 1.0 

.1 

.01 

- Tapered p-version - Tapered h-version 
Uniform h-version 

1 10 100 1000 
Number of degrees of freedom 

Figure 12. Percent error versus number of degrees of freedom for second bending frequency of tapered beam. 
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Figure 13. Percent error versus number of degrees of freedom for third bending frequency of tapered beam. 
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Figure 14. Percent error versus number of degrees of freedom for fourth bending frequency of tapered beam. 
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Figure 15. Percent error versus number of degrees of freedom for first torsional frequency of tapered beam. 
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Figure 16. Percent error versus number of degrees of freedom for first axial frequency of tapered beam. 
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